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Abstract: We formulate and solve the analog of the universal Conformal Ward Identity
for the stress-energy tensor on a compact Riemann surface of genusg > 1, and present a
rigorous invariant formulation of the chiral sector in the induced two-dimensional gravity
on higher genus Riemann surfaces. Our construction of the action functional uses various
double complexes naturally associated with a Riemann surface, with computations that
are quite similar to descent calculations in BRST cohomology theory. We also provide an
interpretation of the action functional in terms of the geometry of different fiber spaces
over the Teichm̈uller space of compact Riemann surfaces of genusg > 1.

1. Introduction

Conformal symmetry in two dimensions, according to Belavin, Polyakov, and Zamolod-
chikov [8], is generated by the holomorphic and anti-holomorphic componentsT(z) and
T̄(z̄) of the stress-energy tensor of a Conformal Field Theory. These components satisfy
the Operator Product Expansions [8, 15]

T(z) T(w) ∼ c/2
(z − w)4

+

(
2

(z − w)2
+

1
z − w

∂

∂w

)
T(w),

T̄(z̄) T̄(w̄) ∼ c/2
(z̄ − w̄)4

+

(
2

(z̄ − w̄)2
+

1
z̄ − w̄

∂

∂w̄

)
T̄(w̄),

T(z) T̄(w̄) ∼ 0,

wherec is the central charge of the CFT and∼ means “up to the terms that are regular as
z → w”. These OPE, together with the regularity conditionT(z) ∼ 1/z4 as|z| → ∞,
are used to construct Verma modules for the Virasoro algebra that correspond to the
holomorphic and anti-holomorphic sectors of a CFT. The operator content of the CFT
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is specified by the highest weight vectors of the Virasoro algebra that correspond to the
primary fieldsOl(z, z̄) with conformal weights (hl, h̄l), satisfying

T(z) Ol(w, w̄) ∼
(

hl

(z − w)2
+

1
z − w

∂

∂w

)
Ol(w, w̄) ,

and similar OPE with̄T(z̄).
A CFT is determined by the complete set of correlation functions among the primary

fields, which are built up of conformal blocks: the correlation functions for the holo-
morphic sector. The conformal blocks are defined by the Conformal Ward Identities of
BPZ [8], which follow from the OPE for the primary fields. Introducing the generating
functional for then-point correlation functions

exp{−W [µ](z1, . . . , zn)} = 〈O1(z1) . . . On(zn) exp

(
− 1

π

∫
C

µ(z, z̄) T(z)d2 z

)
〉

def
= 〈O1(z1) · · · On(zn)〉µ,

where the integration goes over the complex planeC andd2z = i
2 dz∧d z̄ = dx∧dy, z =

x+iy, z̄ = x−iy, the CWI can be written in the following “universal form” (cf. [31, 30])

(∂̄ − µ ∂ − 2µz)
δW

δµ(z)
=

c

12π
µzzz +

n∑
l=1

{hl δz(z − zl) + δ(z − zl)
∂W

∂zl
},

where∂ = ∂/∂z, ∂̄ = ∂/∂z̄. Describing the complete solution of this equation, as well
as of its generalization for higher genus Riemann surfaces, is one of the major problems
of CFT.

This problem remains non-trivial even in the simplest case of conformal blocks
without primary fields, when the generating functionalW [µ] takes the form

exp{−W [µ]} = 〈exp

{
− 1

π

∫
C

µ(z, z̄) T(z) d2z

}
〉 def

= 〈I〉µ . (1.1)

It gives the expectation value of the unit operatorI in the presence of Schwinger’s source
termµ, which is a characteristic feature of all CFT with the same central chargec. The
corresponding universal CWI reduces to the equation

(∂̄ − µ ∂ − 2µz)
δW

δµ(z)
=

c

12π
µzzz (1.2)

for the expectation value of the stress-energy tensor

〈T(z)〉µ
def
=

δW

δµ(z)
.

It is remarkable that the functionalW [µ], for |µ| < 1, can be determined in closed
form and that it turns out to be the Euclidean version of Polyakov’s action functional for
two-dimensional induced quantum gravity [26].

To see this, letµ be a Beltrami coefficient onC – a bounded functionµ with the
property|µ| < 1 – to which one can associate a self-mappingf : C → C as a unique
normalized (fixing 0, 1 and∞) solution of the Beltrami equation
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fz̄ = µ fz .

Denote by

T (z) = {f, z} =
fzzz

fz
− 3

2

(
fzz

fz

)2

the Schwarzian derivative off – “the stress-energy tensor associated withf ”. Then (see,
e.g. [22, 31]), Eq. (1.2) is equivalent to the following Cauchy-Riemann equation

(∂̄ − µ∂)

(( δW

δµ(z)
− c

12π
T (z)

)
/(fz)2

)
= 0

with respect to the complex structure onC defined by the coordinatesζ = f (z, z̄),
ζ̄ = f (z, z̄). Using the regularity of the stress-energy tensor at∞ one gets that

δW

δµ(z)
= 〈T(z)〉µ =

c

12π
T (z) . (1.3)

This variational equation for determiningW was explicitly solved by Haba [18].
Specifically, letf tµ be the family of self-mappings ofC associated to the Beltrami
coefficientstµ, 0 ≤ t ≤ 1. Then

W [µ] =
c

12π

∫ 1

0
d t

∫
C

T tµ µ d2z

solves (1.3). The functionalW can be considered as a WZW type functional since its
definition requires an additional integration over a path in the field space.

Next, consider Polyakov’s action functional for two-dimensional induced quantum
gravity in the light-cone gauge [26], applied to the quasi-conformal mapf :

S[f ] = −
∫

C

fzz

fz

(
fz̄

fz

)
z

d2z . (1.4)

It has the property
δS

δµ(z)
= 2T (z) = 2{f, z},

so thatc S[f ]/24π, considered as a functional ofµ = fz̄/fz, also solves Eq. 1.2.
Therefore, one has the fundamental relation

W [µ] =
c

24π
S[f ], (1.5)

which expressesW as a local functional off and which can be verified directly. This
relation provides the interpretation (cf. [31, 7, 27]) of two-dimensional induced gravity
in the conformal gauge in terms of a gravitational WZNW model (and hence in terms
of a Chern-Simons functional as well).

In the present paper we formulate and solve the analog of Eq. (1.2) for the stress-
energy tensor on a compact Riemann surface of genusg > 1. As in the genus zero case,
it provides an invariant formulation of the chiral sector in two-dimensional induced
gravity on higher genus Riemann surfaces, a solution to the problem discussed in [30].
From a different point of view, this problem was also considered in [34, 35].

First, it should be noted that it is trivial to generalize the genus zero treatment to
the case of elliptic curves – compact Riemann surfaces of genus 1. Namely, letX be
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an elliptic curve realized as the quotientL\C of the complex planeC by the action of a
rank 2 latticeL generated by 1 andτ , with Im τ > 0. The analog of Eq. (1.2) has the
same form, whereµ is now a doubly-periodic function onC, while the corresponding
normalized solutionf of the Beltrami equation has the property

f (z + 1) = f (z) + 1 , f (z + τ ) = f (z) + τ̃ ,

where ˜τ = f (τ ) , Im τ̃ 6= 0. It follows that

f ◦ γ = γ̃ ◦ f for all γ ∈ L,

whereγ̃ ∈ L̃, the rank 2 lattice inC generated by 1 and ˜τ . As a result, the functional
S[f ] has the same form as in (1.4), where now the integration goes over the fundamental
parallelogramΠ of the latticeL.

Having thus addressed the genus 1 case, we start by formulating Eq. (1.2) – the same
applies to the universal CWI as well – on a compact Riemann surfaceX of genusg > 1.
In order to do it one needs to use projective connections onX (see, e.g., [17] for details).
Namely, recall [14] that the stress-energy tensorT of a CFT on a Riemann surface is
c/12 times a projective connection. Therefore the expectation value

〈T(z)〉 =
c

12
Q(z),

is a holomorphic projective connection onX which depends on the particular CFT. The
difference between two projective connections onX is a quadratic differential, so that
in order to define the generating functional for the stress-energy tensor onX, one can
choose a “background” holomorphic projective connectionR and set

exp{−W [µ]} = 〈exp

{
− 1

π

∫
X

µ(z, z̄) (T(z) − c

12
R(z))d2z

}
〉 ,

whereµ is a Beltrami differential onX. The analog of Eq. (1.2) takes the form [6, 22]

(∂̄ − µ∂ − 2µz)
δW

δµ(z)
=

c

12π
(µzzz + 2Rµz + Rzµ),

wherez is a local complex coordinate onX, and was used in [34, 35]. As it follows
from the definition ofW ,

δW

δµ(z)

∣∣∣∣
µ=0

= 〈T(z) − c

12
R(z)〉 =

c

12
(Q(z) − R(z))

and this expectation value can be set to zero if one choosesQ = R. However, when
working with all conformal field theories onX having the same central chargec, it is
preferrable to have a canonical choice of the holomorphic projective connectionR. One
possibility, which is the choice we will adopt in this paper, is to use a Fuchsian projective
connection. It is defined by the Fuchsian uniformization of the Riemann surfaceX, i.e. by
its realization as a quotient0\H of the upper half-planeH by the action of a strictly
hyperbolic Fuchsian group0 with 2g generators. The upper half plane is isomorphic
to the universal cover ofX, while 0, as an abstract group, is isomorphic toπ1(X), the
fundamental group of the surfaceX. Note that the Fuchsian uniformization of Riemann
surfaces plays a fundamental role in the geometric approach to the two-dimensional
quantum gravity through quantum Liouville theory (see [29] and references therein).
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The coveringH → X allows to pull-back geometric objects fromX to H. Since the
Fuchsian projective connection tautologically vanishes onH, the stress-energy tensor
T(z) becomes a quadratic differential for the Fuchsian group0

T ◦ γ (γ′)2 = T for all γ ∈ 0,

whereas the source termµ becomes a Beltrami differential for0,

µ ◦ γ
γ′

γ′ = µ for all γ ∈ 0.

The productTµ is a (1, 1)-tensor for0, so that the integral∫
F

Tµ dz ∧ d z̄

– the natural pairing between quadratic and Beltrami differentials – is well-defined, i.e. it
does not depend on the choice of the fundamental domainF ⊂ H of the Fuchsian group
0. As a result, the functionalW [µ] retains the same form as in formula (1.1), where now
the integration goes over the domainF , and satisfies the same Eq. (1.2), withz ∈ H.
It should be noted that the expectation value of〈T(z)〉µ is no longer zero whenµ = 0,
but rather isc/12 times a holomorphic quadratic differentialq, which is the pull-back
to H of the quadratic differentialQ − R onX and characterizes a particular CFT. Thus,
as it was observed in [34, 35], the generating functional for the stress-energy tensor on
a higher genus Riemann surface is no longer a universal feature of all conformal field
theories with the same value ofc. However, as we shall show in the paper, one can still
find the general solution of Eq. (1.2).

Next, in order to solve the universal CWI and to define an action functional for the
chiral sector in two-dimensional induced gravity onX, one could first try to extend
Polyakov’s functional (1.4) fromC to X by considering the following integral

1
2i

∫
F

ω[f ] , (1.6)

where

ω[f ] =
fzz

fz

(
fz̄

fz

)
z

dz ∧ d z̄ ,

which was the correct choice for the genus 1 case. In this expressionµ = fz̄/fz should
be a Beltrami differential for0, which is necessary for an invariant definition of the
generating functionalW [µ]. This imposes strong conditions on the possible choices of
the mappingf . It should be noted in the first place that, contrary to the genus zero case,
the correspondencef 7→ µ(f ) = fz̄/fz is no longer one-to-one. Indeed, the solution of
the Beltrami equation

fz̄ = µfz

on H depends on the extension of the Beltrami coefficientµ to the lower half-planeH
of the complex planeC. There are two canonical choices compatible with the action of
0. In the first case

µ(z̄, z)
def
= µ(z, z̄), z ∈ H,

whereas in the second case



34 E. Aldrovandi, L.A. Takhtajan

µ(z, z̄)
def
= 0, z ∈ H .

In both cases, the property ofµ being a Beltrami differential for0 is equivalent to the
following equivariance property off (the solution of the Beltrami equation inC). There
should exist an isomorphism0 3 γ 7→ γ̃ ∈ 0̃ ⊂ PSL(2, C), such that

f ◦ γ = γ̃ ◦ f for all γ ∈ 0. (1.7)

In the first case, the restriction off to H yields a self-mapping ofH with 0̃ a Fuchsian
group (thus defining a Fuchsian deformation of0), whereas in the second casef maps
H onto the interior of a simple Jordan curve inC with 0̃ a quasi-Fuchsian group (thus
defining a quasi-Fuchsian deformation of0).

However, using the equivariance property off it is easy to see that the “naive”
expression (1.6) can not be considered as a correct choice for the action functional in
higher genus. Indeed, it follows from (1.7) that:

1. The densityω[f ] is not a (1, 1)-tensor for0, so that the integral (1.6) depends on
any particular choice of the fundamental domainF .

2. The formal variation of (1.6) depends on the values ofδf on the boundary∂F of F .

One may try to overcome these difficulties and resolve the second problem by adding
suitable “correction terms” to the functional (1.6); these can be determined by performing
the formal variation of (1.6). Specifically, all local computations will be the same as in
the genus zero case (see Lemma 2.6), except that now (1.7) does not allow to get rid of
the boundary terms in the Stokes formula by setting the variationsδµ or δf to zero on
∂F . Therefore, besides the local “bulk” term, the variation of (1.6) will contain “total
derivative” terms localized at∂F . This suggests the addition of “counterterms”, which
depend only on the edges ofF , such that their variation cancels the boundary terms
coming from the variation of (1.6). Such counterterms can be determined; it should
be noted that a similar, though much simpler procedure was used in [33], where the
Liouville action functional on the fundamental domain of a Schottky group was defined.
In our case, however, the actual construction goes one step further: the variation of the
edge terms produces additional quantities localized at the vertices of∂F . In turn, their
cancellation requires counterterms that depend on the vertices of∂F , which can be
determined as well.

It turns out that this rather complicated procedure, which solves problem 2, can be
carried out in a canonical way using standard tools from homological algebra, namely
various double complexes naturally associated with the Riemann surfaceX. It is re-
markable that at the same time it solves problem 1 as well!

By using the action of the group0 on H, we extend the singular chain boundary
differential and the de Rham differential onH to act on chains and cochains for the group
homology and cohomology of0. The corresponding group boundary and coboundary
differentials give rise to two double complexes such that the fundamental domainF
and the densityω[f ] can be extended to representatives of suitable homology and co-
homology classes [Σ] and [�f ] and the pairing between them becomes0-invariant.
Subsequently, we define the action functionalS[f ] as the result of such pairing, i.e. as
the evaluation of [�f ] on [Σ]. Quite naturally, the actual computation of these repre-
sentatives goes exactly like descent calculations, familiar from BRST cohomology (see,
e.g. [20]). This is more than a simple analogy in the following sense. The appropriate
tool for linearizing the action of a discrete group is the group ring, which leads to the
group (co)homology that we are using for the action of the Fuchsian group0 onH. The
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corresponding concept in the case of a continuous (Lie) group is the Lie algebra and its
(co)homology, which is used in BRST theory.

The action functionalS[f ] resulting from this construction looks as follows. LetF
be a canonical fundamental domain for0 in the form of a closed non-Euclidean polygon
in H with 4g edges. For anyγ ∈ 0 and any pair (γ1, γ2) ∈ 0×0, letθγ [f ] andΘγ1,γ2[f ]
be a 1-form and a function onH given by the following explicit expressions:

θγ−1[f ] = log(γ̃′ ◦ f )d logfz − log(fz ◦ γ)d logγ′ − 2
γ′′

γ′ µd z̄

dΘγ−1
2 ,γ−1

1
[f ] = f∗(log

(
γ̃1 ◦ γ̃2

)′
d log γ̃′

2

)
+ logγ′

2 d log
(
γ1 ◦ γ2

)′

−1
2
f∗(d(

log γ̃′
2

)2) − 1
2

d
(
logγ′

2

)2
,

wheref∗ denotes the pull-back of differential forms onH by the mappingf . Then

2iS[f ] =
∫

F

ω[f ] −
g∑

i=1

∫
bi

θβi
[f ] +

g∑
i=1

∫
ai

θαi [f ]

+
g∑

i=1

(
Θαi,βi

[f ](ai(0)) − Θβi,αi
[f ](bi(0)) +Θγ−1

i
,αiβi

[f ](bi(0))

)
(1.8)

−
g−1∑
i=1

Θγ−1
g ...γ−1

i+1,γ
−1
i

[f ](bg(0)) .

Hereai andbi are the standard cycles onX viewed as edges ofF with initial points
ai(0) andbi(0),αi andβi are the corresponding generators of the group0, andγi stands

for the commutator [αi, βi]
def
= αiβiα

−1
i β−1

i .
Observe that one can formally setg = 1 in the representation (1.8), replacing the

non-abelian groups0 and 0̃ by the latticesL and L̃, respectively. Since in this case
γ′ = γ̃′ = 1 identically, the differential formsθ anddΘ vanish and the action functional
S[f ] is given by the bulk term only.

It is also instructive to compare our construction with that presented in [34, 35].
Namely, in [34, 35] a solution of (1.2) was written directly on a higher genus Riemann
surface equipped with additional algebro-geometric and/or dissection data. Formally,
this solution also features a bulk term derived from the genus zero Polyakov action plus
contributions of lower degree, but a rather complicated series of prescriptions is involved
in its definition. In our construction, the functionalS[f ] is written down on the universal
coverH and it only depends on the choice of the normalized solutionf of the Beltrami
equation onH. As a result, it enjoys the same nice variational properties as in the genus
zero case. Specifically, we summarize our main results as follows.

Theorem A. The functionalS[f ] does not depend on either the choice of the funda-
mental domainF , or the choice of standard generators for the Fuchsian group0. It has
a geometrical interpretation as a result of the evaluation map given by the canonical
pairing

H2(X, C) × H2(X, Z) −→ C,

whereω[f ] − θ[f ] − Θ[f ] represents an element inH2(X, C) depending onf andF
is canonically extended to a representative of the fundamental class ofX in H2(X, Z).
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Since the action functionalS[f ] is independent of all the choices made, the cor-
responding variational problem is well-defined. We shall consider two versions of it,
depending on whether we choose eitherµ orf , related through the Beltrami equation, to
be the independent functional variable. In the first case, the independent variable belongs
to the linear space of Beltrami differentials for0 and the “source” Fuchsian group0
uniquely determines the “target” Fuchsian (or quasi-Fuchsian) group0̃ = f ◦ 0 ◦ f−1

through the solution of the Beltrami equation (“variation with free endpoint”). In the
second case, the “target” group0̃ and the homomorphism0 → 0̃ are fixed a priori
(“variation with fixed endpoints”) and the independent variablef is a self-mapping ofH
(or a mapping ofH onto the interior of a simple Jordan curve) satisfying the equivariance
property (1.7). In both cases it is guaranteed that the boundary terms arising from (1.6)
are taken care of by the counterterms in (1.8), so that we have

Theorem B. The variation of the actionS[f ] with respect toµ or f is given by the
formulas

δS[f ] = 2
∫

F

T (z) δµ(z)d2z

and

δS[f ] = −2
∫

F

µzzz
δf

fz
d2z ,

respectively.

Needless to say, the variational derivatives ofS[f ] – the quantitiesT (z) andµzzz

– are, respectively, (2, 0) and (2, 1)-tensors for0 (see Lemma 4.2) and can be therefore
pushed down to the Riemann surfaceX ' 0\H.

Note that the critical points of the functionalS[f ], considered for the mappingsf
that intertwine a given Fuchsian group0 and a Fuchsian (or quasi-Fuchsian) group0̃,
consist of those mapsf such that the correspondingµ = fz̄/fz satisfies the “equation
of motion”

µzzz = 0 . (1.9)

For a given pair0, 0̃, determining the critical set ofS[f ] seems to be a very difficult
problem. However, it is rather easy to find the dimension of the solution space of Eq. (1.9)
without imposing any conditions on the target group0̃ = f ◦ 0 ◦ f−1. We shall show in
Sect. 4, using the Riemann-Roch theorem, that this dimension is actually 4g − 3.

Critical points of the functionalS[f ] with respect to the variation with free endpoint
satisfy the equation of motionT (z) = 0. They are a subset of the previous “fixed-end”
critical set (cf. Lemma 2.3 and Proposition 5.2). Again, determining this set seems to
be a non simple task.

As in the genus zero case, it follows from Theorem B thatc S[f ]/24π, considered
as a functional ofµ = fz̄/fz, solves Eq. (1.2), and is a solution local in the map
f . However, in the higher genus case the correspondenceµ 7→ f is no longer one-
to-one and, at least, there are two canonical choices forf producing a Fuchsian or a
quasi-Fuchsian deformation of the Fuchsian group0. Both the functionalsc S[f ]/24π
corresponding to these mappings solve Eq. (1.2). We shall show in Sect. 4.2.2 that the
difference of the corresponding stress-energy tensors is a quadratic differential for0,
which is holomorphic with respect to the complex structure onX determined by the
Fuchsian and the quasi-Fuchsian deformations of0.

As we already mentioned, in genus zero it is possible to express the solution of (1.3)
by integrating along a linear path in the space of Beltrami coefficients. Actually, as we
show in 2.2, any pathµ(t) that connectsµ to 0 leads to the same functional. In the higher
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genus case, we denote byfµ(t) the corresponding solutions of the Beltrami equation on
H producing either a Fuchsian or a quasi-Fuchsian deformation of0, depending on the
given terminal mappingf , and set

T t(z) = {fµ(t), z} .

According to Lemma 4.2, the definition

W [µ]
def
=

c

12π

∫ 1

0

(∫
X

T t µ̇(t) d2z

)
d t , (1.10)

whereµ̇(t) = dµ(t)/dt, makes perfect sense since the integrand in (1.10), being a product
of a Beltrami and a quadratic differential for0, is a (1, 1)-tensor for0. We have

Theorem C. (i) Letf be either a Fuchsian or a quasi-Fuchsian solution of the Beltrami
equation onH. Then

W [µ] =
c

24π
S[f ] ,

so that the functionalW [µ] does not depend on the choice of the homotopyµ(t) and

δW =
c

12π

∫
X

T (z)δµ(z)d2 z .

(ii) The functionalW [µ] is a holomorphic functional ofµ in the quasi-Fuchsian case,
while in the Fuchsian case

∂2W [εµ]
∂ε∂ε̄

∣∣∣∣
ε=0

= − c

48π

∫
F

|µ|2y−2 d2 z ,

for Bers harmonic Beltrami differentialsµ.

It is worth stressing again thatW , as defined in (1.10), is but one possible solution
to the universal CWI onX: we have already noted that the solution corresponding to
a given CFT with central chargec may differ from (1.10) by a term involving a0-
quadratic differential, which is the expectation value of the stress-energy tensor of that
CFT. (Similar observations about the lack of uniqueness in the solution to the CWI due to
holomorphic quadratic differentials appear in [34, 35].) Moreover, the fact that in higher
genus the correspondenceµ 7→ f ceases to be one-to-one clearly affects the value of
(1.10), which will depend on the prescription used to solve the Beltrami equation. These
observations lead to the question of what features of conformal field theories at central
chargec are actually conveyed by (1.10). Since, according to Theorem C, the solution
of (1.10) featuring a quasi-Fuchsian deformation depends holomorphically onµ, it is
therefore natural to conjecture that the corresponding functionalW [µ] (or (c/24π)S[f ],
through Theorem C) represents a universal feature of all conformal field theories with
central chargec.

We also observe that (1.10) can be considered as a WZW type functional, since it is
obtained integrating over a path in the field space. Theorem C says that this term has also
a local representation in two dimensions. This parallels the genus zero situation, where
the Polyakov’s action in the light cone gauge can be actually derived from a WZNW
model [2]. (See also [31, 32] for the analogous situation in the conformal gauge.) In
that case, one obtains a local functional in two dimensions as a consequence of the
topological triviality of the WZW term for the group SL2(R).
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1.1. The organization of this paper is as follows. In Sect. 2 we present a consistent
formulation of the two-dimensional induced gravity in the conformal gauge using quasi-
conformal (even smooth) mappings ofC and without using any analytic continuation
from the light-cone gauge or treatingz andz̄ as independent variables. There we gather
all results, based on local computations, that will be used in the subsequent sections.
Needless to say, essentially all these results are known (see [18, 26, 31, 32]) and we
present them mainly for the convenience of the reader and in order to make the paper
self-contained. We also discuss in detail the formulation based on the functionalW [µ]
from [18], prove that it coincides with the Polyakov’s action functional (which was
implicitly contained in [31]) and compute the Hessians of the action functionalsS[f ]
andW [µ].

We start Sect. 3 by briefly discussing the genus 1 case. Next, we recall the standard
concepts from homological algebra and differential topology that are needed to treat the
case of higher genus Riemann surfaces, relegating the proofs of some rather technical
results to the appendix. We then present the explicit construction of the representatives
of the fundamental class [Σ] and the cohomology class [�f ] corresponding to the
fundamental domainF and the densityω[f ], respectively.

In Sect. 4 we finally define an analog of the Polyakov’s action functional for the
Riemann surfaceX of genusg > 1 and prove Theorems A, B and C. We also prove
that the solution space of the equationµzzz = 0 is 4g − 3-dimensional and compute the
Hessians of the action functionalsS[f ] andW [µ].

The relation of the constructions presented in Sects. 3 and 4 with the geometry of
various fiber spaces over the Teichmüller space is analyzed in Sect. 5. There we describe
exp(−W [µ]) as a section of a line bundle over Teichmüller space, making contact with
previous work on the subject. In the last subsection we draw our conclusions and set
some directions for future work.

2. Generating Functional and Polyakov’s Action in Genus Zero

2.1. Let f be a normalized self-mapping of the complex planeC, i.e. an orientation
preserving diffeomorphism of the Riemann sphereP1 = C∪{∞} fixing 0, 1, ∞. Define
a mapf 7→ µ = µ(f ) = fz̄/fz, whereµ is a smooth Beltrami coefficient onC: a
smooth bounded function such that|µ| < 1. The following basic result of the theory
of quasi-conformal mappings guarantees that the correspondencef 7→ µ is one-to-one
and onto.

Proposition 2.1. Letµ ∈ L∞(C) (the Banach space of measurable functions with finite
supnorm) such that||µ||∞ < 1. Then the Beltrami equation

fz̄ = µfz (2.1)

has a unique solutionf fixing0, 1, ∞which is an orientation preserving quasi-conformal
homeomorphism ofC. The solution is smooth (real-analytic) wheneverµ is smooth (real-
analytic).

Proof. See [1]. �

Let ω[f ] be the following (1, 1)-form
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ω[f ] =
fzz

fz
µz dz ∧ d z̄, (2.2)

which (see the introduction) we identify as the density of Polyakov’s action functional.
Here and elsewhere it is understood thatµ = µ(f ). From now on we also assume that
f (z, z̄) − z → 0 as|z| → ∞ in such a way that the (1, 1)-form ω[f ] is integrable on
C. (One can simply considerµ with finite support; other less restrictive conditions for
the differencef (z, z̄) − z can be formulated in terms of Sobolev spaces.) Define the
functional

S[f ] =
1
2i

∫
C

ω[f ] = −
∫

C

fzz

fz
µz d2z. (2.3)

Remark 2.2.The functionalS[f ] is the Euclidean version of Polyakov’s action func-
tional for the two-dimensional quantum gravity in the light-cone gauge [26]. Let us recall
that it can be also formally obtained (cf. [30]) as a “chiral” version of the Liouville action

A[φ] =
1
2

∫
C

√
h (hab∂aφ ∂bφ + φ Rh),

(wherex1 = x, x2 = y andRh is the curvature of the background metrich), in the
following way. Consider the “metric”h = (dz+µd z̄)⊗d z̄, µ = µ(f ) and setφ = logfz.
SinceRh = 2µzz, the integrand inA[φ] is equal to

φzφz̄ + 2µ
(
−1

2
φ2

z + φzz

)
= −fzz

fz
µz + 2

(
µ

fzz

fz

)
z

.

LetT = {f, z} be the Schwarzian derivative of the mappingf . We have the following
identity, which could also be looked at as an “equation for the trace anomaly” [26, 32].

Lemma 2.3.
(∂̄ − µ∂ − 2µz)T = µzzz .

Proof. A direct computation using the definitions ofµ and of the Schwarzian derivative.
�

Lemma 2.4. The functionalS[f ] is smooth in the sense that its variational derivative
δS/δµ(z), defined as

d

dt

∣∣∣∣
t=0

S(µ + t δµ) =
∫

C

δS

δµ
δµd2z

exists and is given by
δS

δµ(z)
= 2T (z).

Proof. Starting with the formula

δµ =
δfz̄

fz
− µ

δfz

fz
, (2.4)

that relates the variations ofµ andf , we get by a straightforward computation

δω =

{(
δfz

fz

)
z

µz +
fzz

fz
δµz

}
dz ∧ d z̄ = −2Tδµdz ∧ d z̄ − dη, (2.5)
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where

η[f ; δf ] =

(
fzzδfz̄

f2
z

+
µzδfz

fz
−

(
fzz

fz

)
z

µ

)
dz +

fzz δfz

f2
z

d z̄ . �

Proposition 2.5. The functionalc S[f ]/24π is the unique solution of the universal CWI
for the stress-energy tensor.

Proof. It follows immediately from Lemmas 2.3 and 2.4 thatcS[f ]/24π, considered as
a functional ofµ, satisfies Eq. (1.2)

(∂̄ − µ∂ − 2µz)
δW

δµ(z)
=

c

12π
µzzz .

To prove uniqueness, consider the difference

Q[µ](z) =

(
δW

δµ(z)
− c

24π
δS

δµ(z)

)
(fz)−2

and observe (cf. [22, 31]) that it satisfies the following equation

(∂̄ − µ∂)Q[µ](z) = 0,

which shows thatQ[µ](z, z̄) is holomorphic with respect to the new complex structure
ζ = f (z, z̄), ζ̄ = f (z, z̄) onC defined by the Cauchy-Riemann operator∂̄−µ ∂. Recalling
thatδW/δµ(z), as well asT (z), vanish as|z| → ∞ (regularity of the stress-energy tensor
at∞) we conclude thatQ[µ] is an entire function ofζ vanishing at∞, so thatQ[µ] = 0.
Therefore, the functional

c

24π
S[f ] = − c

24π

∫
C

fzz

fz
µz d2z

solves the universal CWI (1.2) onP1. �

Next, we determine the variation ofS with respect tof and determine the classical
equations of motion: the critical pointsδS[f ] = 0 of the functionalS.

Lemma 2.6.

δS[f ] = −2
∫

C
(Tz̄ − µ Tz − 2µz T )

δf

fz
d2z = −2

∫
C

µzzz
δf

fz
d2z ,

so that the classical equation of motion is

µzzz = 0 .

Proof. It follows from the identity

T δµdz ∧ d z̄ = (−Tz̄ + µ Tz + 2µzT )
δf

fz
− dη′,

where

η′ = T
δf

fz
dz + µ T

δf

fz
d z̄ ,

and from Lemma 2.3. �
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2.2. Let µ(t), 0 ≤ t ≤ 1, be the path in the space of Beltrami coefficients connecting
0 with the given Beltrami coefficientµ. It gives rise to a homotopyf t = fµ(t), f0 = id,
f1 = f that consists of normalized quasi-conformal mappings satisfying the Beltrami
equation

f t
z̄ = µ(t)f t

z .

Denoting the corresponding Schwarzians asT t(z) = {f t, z}, so thatT 0 = 0 andT 1 = T ,
we have the following useful variational formulas.

Lemma 2.7.

µ(t)zzz = (∂̄ − µ(t) ∂ − 2µ(t)z)(T t), (i)

δT t = (∂3 + 2T t ∂ + T t
z )(ut), (ii)

δµ(t) = (∂̄ − µ(t) ∂ + µ(t)z)(ut), (iii)

whereut = δf t/f t
z.

Proof. Equation (i) is just a restatement of Lemma 2.3, applied to the mapf t. The
variational formula (ii) is verified by a straightforward (though lengthy) computation
usingT = {f, z} and the definition of the Schwarzian derivative. Finally, Eq. (iii) follows
from the variational formula (2.4), written as

δµ = (∂̄ − µ ∂ + µz)

(
δf

fz

)
and specialized to the mapf t. �

As it follows from Lemma 2.7, the differential operators

T = ∂3 + 2T ∂ + Tz

and
M = ∂̄ − µ ∂ + µz

play a fundamental role in the variational theory. In particular, the third-order differential
operatorT appears in many other different areas as well. It serves as a Jacobi operator
for the second Poisson structure for the KdV equation [24] that is given by the Virasoro
algebra and it plays an important role in Eichler cohomology on Riemann surfaces [17].
The operatorT is skew-symmetric,T τ = −T , with respect to the inner product given
by

(u, v) =
∫

C
u v d2 z , (2.6)

whereasMτ = −D, whereD def
= ∂̄ −µ∂ −2µz. However, we have the following result.

Lemma 2.8. The operatorT M is symmetric.

Proof. It reduces to the verification of the identity (T M)τ = DT , or

(∂3 + 2T ∂ + Tz)(∂̄ − µ ∂ + µz) = (∂̄ − µ ∂ + 2µz)(∂3 + 2T ∂ + Tz),

which immediately follows from Lemma 2.3 andT = {f, z}. �
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Now, let us introduce the functional

W [µ] =
c

12π

∫ 1

0

∫
C

T t µ̇(t) d2z d t, (2.7)

where the dot stands ford/dt. A priori it may depend on the choice of the homotopy
µ(t). The following result shows that the variational derivative ofW with respect to
µ = µ(1) does not depend onµ(t).

Lemma 2.9.
δW

δµ(z)
=

c

12π
T (z) .

Proof. Writing δ(T tµ̇(t)) = δT tµ̇(t) + T tδµ̇(t) and using (ii) in Lemma 2.7, together
with the relation

µ̇(t) = Mt(vt), (2.8)

(wherevt = ḟ t/f t
z) which follows from formula (iii) of Lemma 2.7 applied toδ = d/dt,

we get
δT t ˙µ(t) = T t(ut)Mt(vt) .

Using Lemma 2.8, Eqs. (2.8), (iii) and the equation

Ṫ t = T t(vt) ,

which follows from formula (ii) of Lemma 2.7 applied toδ = d/dt, we obtain∫
C

δT tµ̇(t) d2 z = (T t(ut), Mt(vt)) = −(ut, T tMt(vt))

= (ut, (Mt)τT t(vt)) = (Mt(ut), T t(vt))

=
∫

C
δµ(t)Ṫ t d2 z .

Substituting this into the expression forδW , we get∫ 1

0
(Ṫ tδµ(t) + T tδµ̇(t)) d t = T tδµ(t)

∣∣t=1

t=0
= Tδµ,

which completes the proof. �

Moreover, as the next result shows, the functionalW is actually independent of the
choice of the pathµ(t) connecting the points 0 andµ in the space of Beltrami coefficients.

Proposition 2.10.
W [µ] =

c

24π
S[f ] ,

wheref andµ are related throughµ = fz̄/fz.

Proof. It is essentially the computation in Lemma 2.4, done in the reverse order. Namely,
considering the familiesµ(t) andfµ(t) and using the formula (2.5) for the caseδ = d/dt,
we get

2T tµ̇(t)dz ∧ d z̄ =
d

dt

(
f t

zz

f t
z

µ(t)z dz ∧ d z̄

)
+ dη[f t; ḟ t] ,

which after integrating overC × [0, 1] yields the result.
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2.3. Here we compute the Hessian of the functionalS[f ], i.e. its second variation with
respect tof , evaluated at the critical point. Letδ1f andδ2f be two variations off ,
defined through the two-parameter familyfs,t with f0,0 = f as

δ1f =
∂fs,t

∂s

∣∣∣∣
s=t=0

, δ2f =
∂fs,t

∂t

∣∣∣∣
s=t=0

.

The second variation ofS[f ] is

δ2S[f ] =
d2

ds dt
S[fs,t]

∣∣∣∣
s=t=0

,

and it can be computed using the first variation ofS[f ] from Lemma 2.6

δ1S[f ] = −2
∫

C
µzzz

δ1f

fz
d2z

by evaluatingδ2(µzzz[f ]). As it follows from Lemma 2.7,

δ2
(
µzzz[f ]

)
=

(
∂3 ◦ M

)(δ2f

fz

)
, (2.9)

so that

δ2 S[f ](δ1f, δ2f ) = −2
∫

C

δ1f

fz

(
∂3 ◦ M

)(δ2f

fz

)
d2z . (2.10)

The Hessian is symmetric, so that the right hand side of (2.10) should be a symmetric
bilinear form inδ1f, δ2f wheneverµzzz = 0. This can be verified directly, as we have

Lemma 2.11. The operator∂3 ◦ M for µzzz = 0 is symmetric with respect to the
bilinear form (2.6).

Proof. Using (∂3)τ = −∂3 we have(
∂3 ◦ M

)τ
= D ◦ ∂3 ,

whereD = ∂̄ − µ ∂ − 2µz, and it is straightforward to verify the following identity
whenµzzz = 0:

∂3 ◦ M = D ◦ ∂3 . �

Similarly, one can compute the Hessian of the functionalW [µ]. We have

Lemma 2.12.

δ2 W [µ](δ1µ, δ2µ) =
c

12π

∫
C

δ1µ
(
∂3 ◦ M−1

)
(δ2µ) d2z.

Remark 2.13.Since

M
(

u ◦ f

fz

)
=

fz

fz
(1 − |µ|2) (∂̄u) ◦ f , (2.11)

the operatorM is invertible on the subspace of smooth functions onC vanishing at∞.
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3. Algebraic and Topological Constructions

3.1. Here we consider the genus 1 case. LetX be an elliptic curve, i.e. a compact
Riemann surface of genus 1, realized as the quotientX ∼= L\C, whereL is a rank 2
lattice inC, generated by the translationsα(z) = z +1 andβ(z) = z +τ , where Imτ > 0.
Let µ be a Beltrami coefficient forL, i.e. a||µ||∞ < 1 function onC satisfying

µ ◦ γ = µ for all γ ∈ L,

and letf = fµ be the normalized (fixing 0, 1, ∞) solution of the Beltrami equation on
C

fz̄ = µfz .

It is easy to see thatf ◦ L = L̃ ◦ f , whereL̃ is the rank 2 lattice inC generated by 1 and
τ̃ = f (τ ). Indeed, ˜γ = f ◦ γ ◦ f−1 is a parabolic element in PSL(2, C) fixing ∞, i.e. a
translationz 7→ z + h, and it follows from the normalization thatf (z + 1) = f (z) + 1.
Therefore the (1, 1)-form ω[f ] on C is well-defined onX so that the action functional
takes the form

S[f ] =
1
2i

∫
Π

ω[f ] ,

whereΠ is the fundamental parallelogram for the latticeL.

3.2. Here we consider the higher genus case and construct double complexes that
extend the singular chain and the de Rham complexes onH . We extend the fundamental
domainF for 0 and the (1, 1)-form ω[f ] on H to representatives of the homology and
cohomology classes [Σ] and [�f ] for these double complexes.

3.2.1. Let X ∼= 0\H be a compact Riemann surface of genusg > 1, realized as
the quotient of the upper half-planeH by the action of a strictly hyperbolic Fuchsian
group0. Recall that the group0 is called marked if there is a chosen system, up to
inner automorphism, of 2g free generatorsα1, . . . , αg, β1, . . . , βg satisfying the single
relation

[α1, β1] · · · [αg, βg] = 1 , (3.1)

where [αi, βi]
def
= αiβiα

−1
i β−1

i and 1 is the unit element in0. For every choice of the
marking there is a standard choice of a fundamental domainF ⊂ H for 0 as a closed non-
Euclidean polygon with 4g edges, pairwise identified by suitable group elements. We will
use the following normalization (see, e.g., [19] and Fig. 1). The edges ofF are labelled
by ai, a

′
i, bi, b

′
i andαi(a′

i) = ai, βi(b′
i) = bi for all i = 1, . . . , g; the orientation of the

edges is chosen so that∂F =
∑g

i=1(ai +b′
i −a′

i −bi). Also we set∂ai = ai(1)−ai(0) and
∂bi = bi(1)−bi(0), where the label “1” represents the end point and the label “0” the initial
point with respect to the edge’s orientation. One has the following relations between the
vertices ofF and the generators:ai(0) = bi+1(0),α−1

i (ai(0)) = bi(1),β−1
i (bi(0)) = ai(1)

and [αi, βi](bi(0)) = bi−1(0), where, in accordance with (3.1),b0(0) = bg(0).

3.2.2. Letµ be a Beltrami differential for the Fuchsian group0, i.e. a bounded (L∞(H))
function onH satisfying

µ ◦ γ
γ′

γ′ = µ for all γ ∈ 0.
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2
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1
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1
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1
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Fig. 1.Conventions for the fundamental domainF

In addition, it is called a Beltrami coefficient for0 when||µ||∞ < 1. Denote byf = fµ

the normalized (fixing 0, 1 and∞) solution of the Beltrami equation onH

fz̄ = µfz .

As it was already explained in the introduction, we considerf to be either a self-mapping
of H, or a mapping ofH onto the interior of a simple Jordan curve inC, uniquely
determined byµ. These two choices can be realized by considering the Beltrami equation
on the whole complex planeC: in the former case the Beltrami coefficientµ is extended
to the lower half-planeH by reflecting it through the real lineR, while in the latterµ is
extended by zero inH. In both cases there exists0̃ ⊂ PSL(2, C), isomorphic to0 as an
abstract group and such thatf intertwines between0 and0̃

f ◦ γ = γ̃ ◦ f for all γ ∈ 0,

which actually defines the isomorphismγ 7→ γ̃. In the first case we have that0̃ ⊂
PSL(2, R) and it is in fact a Fuchsian group, a Fuchsian deformation of0. In the second
case0̃ is a so-called quasi-Fuchsian group, a special case of a Kleinian group. Its domain
of discontinuity has two invariant components, the interior and the exterior of a simple
Jordan curve inC, which is the image of the real lineR under the mappingf and is
a limit set for0̃. These mappings, introduced and studied by Ahlfors and Bers, play a
fundamental role in Teichm̈uller theory (see, e.g. [16]).

3.2.3.LetS• ≡ S•(X0) be the standard singular chain complex ofH with the differential
∂′. (From now on, we will denote the singular chain differential by∂′, as the symbol∂
will be reserved for the total differential in a double complex, to be introduced below.)
The group0 acts onH and induces a left action onS• by translating the chains, hence
S• becomes a complex of0-modules. Since the action of0 on H is proper,S• is a
complex of leftfreeZ0-modules [23], whereZ0 is the integral group ring of0: the set
of finite combinations

∑
γ∈0 nγγ with coefficientsnγ ∈ Z.

Let B• ≡ B•(Z0) be the canonical “bar” resolution complex for0, with differential
∂′′. EachBn(Z0) is a free left0-module on generators [γ1| . . . |γn], with the differential
∂′′ : Bn → Bn−1 given by

∂′′[γ1| . . . |γn] = γ1 [γ2| . . . |γn] +
∑n−1

i=1 (−1)i[γ1| . . . |γi γi+1| . . . |γn]

+(−1)n[γ1| . . . |γn−1]
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for n > 1 and by
∂′′[γ] = γ[ ] − [ ]

for n = 1. Here [γ1| . . . |γn] is defined to be zero if any of the group elements inside
[. . .] equals the unit element 1 in0. B0(Z0) is aZ0-module on one generator [ ], and
can be identified withZ0 under the isomorphism that sends [ ] to 1.

Next, consider the double complexK•,• = S• ⊗Z0 B•. The associated total simple
complex TotK is equipped with the total differential∂ = ∂′ + (−1)p∂′′ on Kp,q. For
the sake of future reference, we observe thatS• is identified withS• ⊗Z0 B0 under the
correspondencec 7→ c ⊗ [ ].

Remark 3.1.SinceS• andB• are both complexes of left0-modules, in order to define
their tensor product overZ0 we need to endow eachSn with a right0-module structure.

This is done in the standard fashion by settingc · γ
def
= γ−1(c). As a resultS ⊗Z0 B =(

S ⊗Z B
)
0
, so that the tensor product over integral group ring of0 can be obtained as

the set of0-invariants in the usual tensor product (overZ) as abelian groups [9].

The application of standard spectral sequence machinery, together with the trivial
fact thatH is acyclic, leads to the following lemma, whose formal proof immediately
follows, for example, from [23], Theorem XI.7.1 and Corollary XI.7.2.

Lemma 3.2. There are isomorphisms

H•(X, Z) ∼= H•(0, Z) ∼= H•(Tot K•,•) ,

where the three homologies are the singular homology ofX, the group homology of0
and the homology of the complexTot K•,• with respect to the total differential∂.

We will use this lemma in the construction of the explicit cycleΣ in Tot K that
extends the fundamental domainF . For the convenience of the reader we present a
simple minded proof of Lemma 3.2 in Appendix A.

3.2.4. We now turn to constructions dual to those in 3. Denote byA• ≡ A•
C(X0) the

complexified de Rham complex onH. EachAn is a left0-module with the pull-back

action of0, i.e. γ · φ
def
= (γ−1)∗φ for φ ∈ A• and for allγ ∈ 0. Consider the double

complexCp,q = Hom(Bq, Ap) with differentialsd, the usual de Rham differential, and
δ = (∂′′)∗, the group coboundary. Specifically, forφ ∈ Cp,q,

(δφ)γ1,...,γq+1 = γ1 · φγ2,...,γq+1 +
q∑

i=1

(−1)iφγ1,...,γiγi+1...,γq+1

+(−1)q+1φγ1,...,γq .

As usual, the total differential onCp,q isD = d+(−1)pδ. Either by dualizing Lemma 3.2
or working out the spectral sequences resulting fromC, we obtain the

Lemma 3.3. There are isomorphisms

H•(X, C) ∼= H•(0, C) ∼= H•(Tot C•,•) ,

where the three cohomologies are the de Rham cohomology ofX, the group cohomology
of0 and the cohomology of the complexTot C•,• with respect to the total differentialD.
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As for Lemma 3.2, a simpler proof can also be found in Appendix A.
Finally, there exists a natural pairing betweenCp,q andKp,q which assigns to the

pair (φ, c ⊗ [γ1| . . . |γq]) the evaluation of the formφγ1,...,γq over a cyclec,

〈φ, c ⊗ [γ1| . . . |γq]〉 =
∫

c

φγ1,...,γq . (3.2)

By the very construction of the double complexesC•,• andK•,•, the total differentials
D and∂ are transpose to each other

〈D8, C 〉 = 〈 8, ∂C〉 (3.3)

for all 8 ∈ C•,•, C ∈ K•,•. Therefore the pairing (3.2) descends to the corresponding
homology and cohomology groups and is non degenerate. It defines a pairing between
H•(Tot C•,•) andH•(Tot K•,•) which we continue to denote by〈 , 〉.

3.3. Here we compute explicit representativesΣ and�f , for the fundamental class of
the surfaceX and a degree two cohomology class onX that extend the fundamental
domainF and the 2-formω[f ], respectively.

3.3.1. Homology computations.Fix the marking of0 and choose a fundamental domain
F as in 3. We start by the observation thatF ∼= F ⊗ [ ] ∈ K2,0. Furthermore, obviously
∂′′F = 0, and

∂′F =
g∑

i=1

(b′
i − bi − a′

i + ai)

=
g∑

i=1

(β−1
i (bi) − bi − α−1

i (ai) + ai) ,

which we can rewrite as∂′F = ∂′′L, whereL ∈ K1,1 is given by

L =
g∑

i=1

(bi ⊗ [βi] − ai ⊗ [αi]) . (3.4)

This follows fromγ−1(c)− c = c ·γ − c = c⊗γ[ ] − c⊗ [ ] = c⊗∂′′[γ] for any singular
chainc and anyγ ∈ 0.

Let us now compute∂′L. There existsV ∈ K0,2 such that∂′L = ∂′′V ; its explicit
expression is given by

V =
g∑

i=1

(
ai(0) ⊗ [αi|βi] − bi(0) ⊗ [βi|αi] + bi(0) ⊗ [γ−1

i |αiβi]
)

−
g−1∑
i=1

bg(0) ⊗ [γ−1
g . . . γ−1

i+1|γ
−1
i ] ,

(3.5)

where [αi, βi] = γi. Indeed, a straightforward computation, using the relations between
generators and vertices, yields

∂′L = ∂′′V − bg(0) ⊗ [γ−1
g . . . γ−1

1 ] ,
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and the second term in the RHS vanishes by virtue of (3.1), since [1] = 0.
From the relations∂′F = ∂′′L and∂′L = ∂′′V it follows immediately that the

elementΣ = F + L − V of total degree two is a cycle in TotK, that is

∂(F + L − V ) = 0 .

Thus we have the

Proposition 3.4. The cycleΣ ∈ (Tot K)2 represents the fundamental class of the sur-
face inH2(X, Z).

Proof. This follows immediately from Lemma 3.2, provided the class [Σ] is not zero,
but this is not the case, since the cycleΣ is a “ladder” starting from the fundamental
domainF . It follows from the arguments in Appendix A that the latter in fact maps
underS2 3 F 7→ F ⊗ 1 ∈ S2 ⊗Z0 Z ∼= S2(X) to a representative of the fundamental
class. �

Remark 3.5.The existence of the elementsL andV can be guaranteed a priori by the
methods of Appendix A, using the fact that0 has no cohomology except in degree zero.

As it follows from Proposition 3.4, the homology class [Σ] is independent of the
marking of the Fuchsian group0 and of the choice of the fundamental domainF ,
whereas its representativeΣ is not. Since this independence is a key issue in defining
the action functional for the higher genus case, we will show explicitly that different
choices lead to homologousΣ. Essentially, these choices are the following.

– Within the same marking choose another set of canonical generatorsα′
i, β

′
i by con-

jugatingαi, βi with γ ∈ 0 so thatF ′ = γF for the corresponding fundamental
domains.

– Within the same marking make a different choice of the fundamental domainF ′
(which is always assumed to be closed inH), not necessarily equal to the canonical
4g polygonF .

– Consider a different markingα′
i, β

′
i and a fundamental domainF ′ for it.

Clearly, all the previous cases amount to an arbitary choice of the fundamental domain
for 0. However, ifF andF ′ are two such choices, then there exist a suitable set of
indices{ν}, elementsγν ∈ 0 and singular two-chainscν such that

F ′ − F =
∑

ν

(γ−1
ν (cν) − cν) . (3.6)

It follows, for instance, from the fact that the chain complex forH is a free0-module [23].
Then we have the following

Lemma 3.6. If F andF ′ are two choices of the fundamental domain for0 in H, then
[Σ] = [Σ′] for the corresponding classes inH•(Tot K•,•).

Proof. Let Σ = F + L − V andΣ′ = F ′ + L′ − V ′ be the cycles in TotK constructed
according to the method of 3.3.1. It follows from (3.6) that

F ′ − F = ∂′′(∑
ν

cν ⊗ [γν ]
)
,

and therefore
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F ′ + L′ − F − L = ∂
(∑

ν

cν ⊗ [γν ]
)

+
(
L′ − L −

∑
ν

∂′(cν) ⊗ [γν ]
)
.

The second term in these expression is an element ofK1,1 and its second differential is

∂′′(L′ − L −
∑

ν

∂′(cν) ⊗ [γν ]
)

= ∂′(F ′ − F ) −
∑

ν

(γ−1
ν (∂′(cν)) − ∂′(cν))

= 0 .

Since the higher homology of0 with values inS• is zero (cf. Appendix A), there exists
an elementC ∈ K1,2 such that

L′ − L −
∑

ν

∂′(cν) ⊗ [γν ] = ∂′′C ,

so that
Σ′ − Σ = ∂

(∑
ν

cν ⊗ [γν ] − C
)

− V ′ + V + ∂′C .

Similarily, ∂′′(V ′ − V − ∂′C) = 0, and therefore there existsK ∈ K0,3 such that
V ′ − V + ∂′C = ∂′′K. Finally,

Σ′ − Σ = ∂
(∑

ν

cν ⊗ [γν ] − C − K
)
,

since, obviously,∂′K = 0. �

3.3.2. Cohomology computations.Here we pass to the dual computations in cohomology.
Let

ω[f ] =
fzz

fz
µz dz ∧ d z̄ ,

be the density of Polyakov’s action functional in the genus zero case, whereµ = fz̄/fz.
Obviously,ω[f ] can be considered as an element inC2,0, that is a two-form valued zero
cochain on0. Then there exist elementsθ[f ] ∈ C1,1 andΘ[f ] ∈ C0,2 such that

δω[f ] = dθ[f ] and δθ[f ] = dΘ[f ] ,

so that thef -dependent cochain�f
def
= ω[f ] − θ[f ] − Θ[f ] of total degree two is a

cocycle in TotC, that is

D(ω[f ] − θ[f ] − Θ[f ]) = 0 .

Indeed,dδω[f ] = δdω[f ] = 0 becauseω[f ] is a top form onH, and sinceH is
contractible, it follows that there existsθ[f ] such thatδω[f ] = dθ[f ]. Similarly,
dδθ[f ] = δdθ[f ] = δδω[f ] = 0 and again, sinceH is acyclic, there existsΘ[f ] such
thatδθ[f ] = dΘ[f ]. Continuing along this way, we getdδΘ[f ] = 0, so thatδΘ[f ] is a
3-cocycle on0 with constant values. As it follows from Lemma 3.3,H3(0, C) = {0},
so that, shiftingΘ[f ] by a C-valued group cochain, if necessary, one can choose the
“integration constants” in the equationdΘ[f ] = δθ[f ] in such a way thatδΘ[f ] = 0.
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It is quite remarkable that explicit expressions forθ[f ] andΘ[f ] can be obtained by
performing a straightforward calculation. Indeed, using

f ◦ γ = γ̃ ◦ f and µ ◦ γ
γ′

γ′ = µ,

we get
δωγ [f ] = ω[f ] ◦ γ−1|(γ−1)′|2 − ω[f ] = dθγ [f ]. (3.7)

A direct computation, using the property that{γ, z} = 0 for all fractional linear trans-
formations, verifies that

θγ−1[f ] = log(γ̃′ ◦ f )d logfz − log(fz ◦ γ)d logγ′ − 2
γ′′

γ′ µd z̄. (3.8)

Proceeding along the same lines one can work out an expression forΘ[f ]; in order to
get a manageable formula, it is more convenient to write down its differential

dΘγ−1
2 ,γ−1

1
[f ] = f∗(log

(
γ̃1 ◦ γ̃2

)′
d log γ̃′

2

)
+ logγ′

2 d log
(
γ1 ◦ γ2

)′

− 1
2
f∗(d(

log γ̃′
2

)2) − 1
2

d
(
logγ′

2

)2
.

(3.9)

It is easy to verify that the right hand side of this expression is indeed a closed one-form
onH and, therefore, is exact.

Remark 3.7.One can obtain a formula forΘ[f ] by integrating (3.9). The resulting
expression will involve combinations of logarithms and dilogarithms, resulting from the
typical integral ∫

logγ′ d logσ′,

whereγ andσ are fractional linear transformations. The customary choice in defining
this integral is to put branch-cuts from−∞ to γ−1(∞) and fromσ−1(∞) to ∞. When
these elements belong to the Fuchsian group0, the branch-cuts should go along the
real axisR which is the limit set of0. The same applies to the target group0̃ when
the mappingf defines a Fuchsian deformation. If the target group0̃ is quasi-Fuchsian,
the branch-cuts should go along the limit set of0̃, the simple Jordan curve that is the
image ofR under the mappingf . With this normalization,Θγ−1

2 ,γ−1
1

(f ) is defined up
to the “integration constants”cγ−1

2 ,γ−1
1

which are determined from the condition that
δΘ[f ] = 0.

Therefore we proved, in complete analogy with the homological computation, that
the cochain�f = ω[f ] − θ[f ] − Θ[f ] ∈ (Tot C)2 is in fact a cocycle,

D�f = 0 .

Hence, from Lemma 3.3, we have

Proposition 3.8. The cocycle�f ∈ (Tot C)2 represents a cohomology class in
H2(X, C) ∼= C , which depends on the mappingf .

Remark 3.9.It might happen that the cohomology class [�f ] = 0 for some specific
mapping(s)f .
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4. Polyakov’s Action in Higher Genus

4.1. After the algebraic and topological preparations of Sect. 3, here we finally define the
Polyakov action functional and prove Theorems A, B, C. LetX ' 0\H be a Riemann
surface of genusg > 1 andf be a quasi-conformal mapping such that0̃ = f ◦ 0 ◦ f−1

is a Fuchsian or quasi-Fuchsian group isomorphic to0 (see the introduction and 3.2.2
for details). Using the pairing betweenC•,• andK•,•, we set

2iS[f ] = 〈�f , Σ〉
= 〈ω[f ], F 〉 − 〈θ[f ], L〉 + 〈Θ[f ], V 〉

=
∫

F

ω[f ] −
g∑

i=1

∫
bi

θβi
[f ] +

g∑
i=1

∫
ai

θαi
[f ]

+
g∑

i=1

(
Θαi,βi

[f ](ai(0)) − Θβi,αi
[f ](bi(0)) +Θγ−1

i
,αiβi

[f ](bi(0))

)

−
g∑

i=1

Θγ−1
g ···γ−1

i+1,γ
−1
i

[f ](bg(0)) .

(4.1)

Proof of Theorem A.It follows at once from the constructions in Sect. 3. First, the value

of S[f ], for any givenf , depends only on the classes defined by�f andΣ and not on the
explicit cocycles representing them. Indeed, because of the property (3.3) of the pairing
〈 , 〉, shifting either�f or Σ by (co)boundaries does not alter the value given in (4.1).
Furthermore, by virtue of Lemma 3.6 and the above invariance, the actionS[f ] does not
depend on either the choice of the marking of0, or on the choice of the fundamental
domainF . Finally, it follows from Propositions 3.4 and 3.8, which identify the (total)
homology of the complexesK•,• andC•,• with that of the surfaceX, that the action
S[f ] comes from the pairing

H2(X, C) × H2(X, Z) −→ C .

�

Remark 4.1.Since the action results from a pairing in homology, we write it as

S[f ] =
1
2i

〈[�f ], [Σ]〉, (4.2)

stressing its dependence on the (co)homology classes only.

4.2. Here we discuss the variational properties of the action functional (4.1) and prove
Theorem B. As it was mentioned in the introduction, there are two versions of the
variational problem forS[f ]. In the first one, the free-end variation, we considerµ to
be the independent variable, so that the target Fuchsian (or quasi-Fuchsian) group0̃ is
determined byµ through the solution of the Beltrami equation. In the second case, the
fixed-end variation, we fix the target Fuchsian (or quasi-Fuchsian) group0̃, together with
the isomorphism0 −→ 0̃ and consider the setQC(0, 0̃) of all smooth quasi-conformal
mappingsf that intertwine between0 and0̃.
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In the first case, since the set of Beltrami coefficients for0 is the interior of a ball
of radius 1 (with respect to the|| ||∞ norm) in the linear spaceB(0) of all Beltrami
differentials for0, the variationδµ belongs toB(0).

In the second case, since the target Fuchsian (or quasi-Fuchsian) group0 is fixed, it
follows from the equivariance property (1.7) thatδf/fz is (−1, 0)-tensor for0, that is

δf

fz
◦ γ =

δf

fz
γ′ for all γ ∈ 0.

One can expressδf/fz in terms of a vector field onX as follows. LetG0 be the group of
all orientation preserving diffeomorphisms ofH fixing 0 and homotopic to the identity.
Any pathgt in G0 connected to the identity defines a pathf t = f ◦ gt in QC(0, 0̃)
connected tof ∈ QC(0, 0̃), a deformation of the mappingf . Setting

δf =
d

dt

∣∣∣∣
t=0

f t

and definingv = vz ∂z + vz̄ ∂z̄ as the vector field generating the flowt 7→ gt, we get

δf

fz
= vz + µ vz̄ ,

whereµ = fz̄/fz is the Beltrami coefficient for0 corresponding tof .
Note that in the first case the corresponding variationδf/fz is not necessarily a

(−1, 0)-tensor for0, since the target group̃0 “floats” under a generic variation ofµ
(variation with free end). Specifically,

δf

fz
◦ γ

1
γ′ =

δf

fz
+

1
fz

(
δγ̃

γ̃′

)
◦ f , (4.3)

for all γ ∈ 0. Objects onH with such tranformation property are pull-backs under the
mapf of non-holomorphic Eichler integrals of order−1 for the group0̃. By defini-
tion [21], the spaceE−1

0̃
of these Eichler integrals consists of smooth functionsE onH

such that

E ◦ γ̃
1
γ̃′ = E + pγ̃ , (4.4)

for all γ̃ ∈ 0̃, wherepγ̃ is a 1-cocycle of0̃ with coefficients in the linear space of
polynomialsP of order≤ 2 with the action

P 7→ ((γ̃−1)′)2P ◦ γ̃−1.

Clearly the pull-back (E ◦ f )/fz of the Eichler integralE has the trasformation prop-
erty (4.3).

In both cases the variations off andµ are related by the same equation

M
(

δf

fz

)
= δµ,

whereM = ∂̄ − µ ∂ + µz is the differential operator introduced in Sect. 2. It has
the remarkable property of mapping (−1, 0)-tensors for0, and even objects of more
complicated type such as pull-backs of Eichler integrals, into (−1, 1)-tensors for0.
There are other differentials operators with similar properties, collected in the following
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Lemma 4.2. (i) The operatorsT = ∂3+2T∂ +Tz andM = ∂̄−µ∂ +µz, whereT is a
quadratic differential for0 andµ is Beltrami differential for0, map(−1, 0)-tensors
for 0 into quadratic and Beltrami differentials for0, respectively.

(ii) The operatorsT andM from part (i) map pull-backs by the mappingf of Eich-
ler integrals of order−1 for 0̃ into quadratic and Beltrami differentials for0,
respectively.

(iii) If f is mapping ofH intertwining0 and0̃, thenT = {f, z} is a quadratic differential
for 0.

Proof. Part (i) is well-known (see, e.g. [17]) and the statements can be easily verified. In
particular, settingT = 0 we get thatµzzz is a (2, 1)-tensor for0, which is also a known
result (see, e.g. [21]).

In order to prove part (ii), note that for a holomorphic functionp onH we have

T
(

p ◦ f

fz

)
= f2

z (∂3p) ◦ f ,

which shows that the additional terms in the transformation law (4.3) belong to the kernel
of T . Similarly, (2.11) shows that these terms belong to the kernelM as well.

Part (iii) is another classical result, which can be easily verified as well.

4.2.1. Proof of Theorem B.For concreteness, we first consider variations with respect
to µ, though, as we shall see, the actual argument works for both kinds of variations.

The proof requires climbing the “ladder” in the double complexC•,•, together with
the computation of the variation ofω[f ]. Sinceω[f ] is a local functional off , we can
just use the computation already done in genus zero so that, according to formula (2.5),

δω = a − dη , (4.5)

wherea = −2T δµdz ∧ d z̄ and the explicit expression for the 1-formη is not needed.
(In order to simplify notations, we temporarily drop the dependence onf from the
notation.) As it follows from Lemma 4.2, the 2-forma on H is a (1, 1)-tensor for0,
therefore it is closed with respect to the total differential, i.e.Da = 0.

Next observe thatDδ� = δD� = 0, thereforeD(δ� − a) = 0. We want to show
thatδ� − a is in factD-exact up to a term whose contribution vanishes after pairing
with Σ.

To this end, let us write
δΘ = δχ ,

whereχ has degree (0, 1) in the total complex. This is possible, since, as it is shown in
the appendix, the higher cohomology of0 with coefficients in the de Rham complex
vanishes. The equationDδ� = 0 gives us the two relations

dδΘ = δδθ , dδθ = δδω , (4.6)

of which the first one implies that

δθ = dχ + δλ ,

where, again, the vanishing ofHq(0, Ap) for q > 0 has been used. Plugging this relation
into the second one in (4.6), yields

δδω = δdλ .



54 E. Aldrovandi, L.A. Takhtajan

Notice that this time we can at most conclude thatδω − dλ is a 0-invariant form,
sinceH0(0, Ap) precisely gives the invariantp-forms (cf. the appendix). We write this
invariant form asa + b, for some (2, 0) invariant elementb, so that

δω = dλ + a + b

and, using (4.5),
b = −d(η + λ) ,

i.e. b is 0-invariant and exact. Putting all together, we obtain

δ� = δω − δθ − δΘ

= a − dη − dχ − δλ − δχ

= a + b + D(λ − χ) ,

which, after evaluation againstΣ, reduces to

〈δ� , Σ〉 =
∫

F

a ,

as wanted (the integral ofb overF is obviously zero).
In order to complete the proof, notice that the variation ofω[f ] always has the

form (4.5), independently of whether either variableµ or f is varied. In the latter case,
the variationδf/fz is a (−1, 0)-tensor for0, so that we can use (4.5) and the relation
δµ = M(δf/fz) together with Lemma 2.3. �

Remark 4.3.Note that the argument presented in the proof of Theorem B is quite general.
It applies to any functional defined by an evaluation of a cocycle in TotC2 over a cycle
Σ, provided that the cocycle is the extension of a 2-form onH with the property that its
variation is a sum ofD andd-exact terms.

4.2.2. As it was mentioned in the introduction, it follows from Theorem B that
c S[f ]/24π, considered as a functional ofµ = fz̄/fz, solves Eq. (1.2), no matter what
kind of deformation we are considering, be it Fuchsian or quasi-Fuchsian. Thus there are
at least two possible solutions of (1.2) on a Riemann surface of genus higher than one.
In order to clearly distinguish the two cases, let us adopt for a moment the customary
notation in the theory of quasi-conformal mappings [1], so thatfµ and0µ (respectively
fµ and0µ) stand for the Fuchsian (respectively, quasi-Fuchsian) deformation of0.

There is a simple relationship between the variations ofS[fµ] andS[fµ]. First of
all, observe that the mappingg := fµ ◦ (fµ)−1 : H → fµ(H) is conformal (note that
fµ(H) = H). Indeed, it follows from the Beltrami equation that

∂g

∂ζ̄
=

∂fµ

∂z

(
∂(fµ)−1

∂ζ̄
+ µ

∂(fµ)−1

∂ζ̄

)
= 0 ,

whereζ = fµ(z, z̄) is the new complex coordinate onH. Moreover, the mapg intertwines
0µ and0µ, thus it descends to a biholomorphic map

g : Xµ = 0µ\H −→ 0µ\fµ(H) = Xµ

showing that the Riemann surfacesXµ andXµ are conformally equivalent. Furthermore,
we have

Tµ(z) = {fµ, z} = {g, ζ} ◦ fµ (fµ
z )2 + Tµ(z) ,
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whereTµ(z) = {fµ, z}. Thus the difference

Q =
δS[fµ]

δµ
− δS[fµ]

δµ

is just the pull-back underfµ of the holomorphic quadratic differential obtained by
taking the Schwarzian derivative ofg with respect to the new complex coordinateζ. Of
course, the situation is completely symmetric under the exchange offµ andfµ.

One can reach the same conclusion proceeding along a different line (cf. [32]).
Namely, since bothS[fµ] andS[fµ] satisfy (1.2),Q satisfies the equation

(∂̄ − µ ∂ − 2µz)Q = 0

which, using the Cauchy-Riemann operator

∂

∂ζ̄
=

∂z̄

∂ζ̄

(
∂

∂z̄
− µ

∂

∂z

)
can be written as

∂ζ̄

(
Q

f2
z

)
= 0 ,

showing thatQ is indeed the pull-back of a holomorphic quadratic differential with
respect to the complex coordinateζ.

Remark 4.4.The above argument actually shows that homogeneous solutions to the
equation (1.2) onX are pull-backs under the mappingfµ (or fµ) of the holomorphic
quadratic differentials on the “target” Riemann surfaceXµ. According to the Riemann-
Roch theorem, this space is 3g −3-dimensional; therefore, the universal CWI (1.2) does
not completely determine the generating functional for the stress-energy tensor in the
higher genus case. As we mentioned in the introduction, additional information should
be provided by the particular CFT.

4.2.3. According to Theorem B, the variation of the action with respect to the mapf
yields the classical equation of motion

µzzz = 0 . (4.7)

Here we compute the dimension of the space of solutions of (4.7). It was observed in the
introduction that determining the critical set ofS[f ] in QC(0, 0̃) out of (4.7) seems to
be a very difficult problem. However, the space of solutions to (4.7) is quite interesting
since, as we show below, it contains the subspace of harmonic Beltrami differentials.

First, recall the definition of the so-called Maass operators (see, e.g. [13]). Fork, l ∈
Z, denote byAk,l

0 ≡ Ak,l
C (H)0 ∼= Ak,l

C (X) the space of0-invariant (k, l)-forms onH;
by convention, (dz)k, for k negative, means (∂/∂z)−k. Define

Dk,l : Ak,l −→ Ak+1,l

by
Dk,l = y−2k ◦ ∂ ◦ y2k ,

where∂ = ∂/∂z. It is easy to verify that

∂ 3
z = D1,1 ◦ D0,1 ◦ D−1,1 , (4.8)
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which once again shows that the operator∂ 3
z maps Beltrami differentials into the (2, 1)-

tensors for0. Furthermore, a Beltrami differentialν ∈ A−1,1
0 is called Bers harmonic if

it is harmonic with respect to the∂-Laplacian of the Poincaré metric on0\H, acting on
(−1, 1)-forms. It can be shown that

ν = y2 q̄ ,

whereq ∈ A2,0
0 is a holomorphic quadratic differential. It follows from the Riemann-

Roch theorem that Bers harmonic Beltrami differentials form a (3g − 3)-dimensional
complex vector space and play an important role in the Teichmüller theory [1, 16].

Proposition 4.5. The space of solutions of Eq. (4.7) has complex dimension4g − 3:

dimC KerA−1,1
0

(∂ 3
z ) = 4g − 3,

and contains the3g−3dimensional vector space of Bers harmonic Beltrami differentials.

Proof. Using (4.8), we start by observing that the kernel ofD−1,1 coincides with
the space of harmonic Beltrami differentials. Indeed,ν ∈ Ker(D−1,1) if and only if
∂(y−2ν) = 0, which impliesν = y2 q̄, for q a holomorphic quadratic differential, since
y−2ν is a (0, 2)-form.

Furthermore, Ker(D1,1) ∩ Im(D0,1) = {0}. Indeed, an element in Ker(D1,1) is nec-
essarily a multiple of the (1, 1)-form y−2. If it is non zero, then it cannot belong to
Im(D0,1) = Im ∂, sincey−2 represents a cohomology class in0\H.

Next, it is clear that Ker(D0,1) is complex anti-isomorphic to the linear space of
Abelian differentials forX. Finally, the mapD−1,1 is onto: its image is the entire space
of (0, 1)-differentials. Namely, the operator adjoint toD−1,1 with respect to the Hermitian
scalar product onAk,l

0 induced by the Poincaré metricy−2 is D∗
−1,1 = −∂̄ ◦ y2, which

has zero kernel sinceg > 1. Thus any element in Ker(D0,1) is theD−1,1-image of an
element inA−1,1

0 , orthogonal to the subspace of harmonic Beltrami differentials, and it
also belongs to the kernel of∂ 3

z . Counting 4g − 3 = 3g − 3 +g proves the claim. �

Remark 4.6.As in the genus zero case, the equation of motion (4.7) is equivalent to the
holomorphicity property ofT = {f, z}with respect to the new complex structure induced
by f . Namely, whenµ satisfies (4.7), the corresponding (1.2) becomes homogeneous so
that, according to 4.2.2, we have

∂ζ̄

(
T

(∂zζ)2

)
= 0 (4.9)

for the stress-energy tensor in the new coordinatesζ , ζ̄. This condition is well defined
on the surfaceX as well as on the deformed Riemann surface0̃\f (H).

4.2.4. Here we briefly comment on the computation of the second variation. It follows
from Lemma 4.2 that the differential operators used in the genus zero computation are
tensorial; therefore, using Theorem B and the fact that the problem is local, we can just
repeat the computations in 2.3 in order to get the

Proposition 4.7. The Hessian of the Polyakov action (4.1) is given by the genus zero
formula

δ2 S[f ](δ1f, δ2f ) = −2
∫

F

δ1f

fz

(
∂3 ◦ M

)(δ2f

fz

)
d2 z .
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4.3. We now analyze howS[f ] relates to the functionalW [µ] defined by (1.10), and
prove Theorem C.

Fort ∈ [0, 1], letµt be a homotopy in the space of Beltrami differentials connecting
0 toµ, and letf t be the solution of the Beltrami equation corresponding toµt. For the
sake of convenience, let us rewrite (1.10) here:

W [µ] =
c

12π

∫ 1

0

(∫
F

T t µ̇(t) d2 z

)
d t . (4.10)

The integration in (4.10) is extended toF , but, according to Lemma 4.2, the integrand
is a (1, 1)-tensor for0, hence the integral descends toX.

Proof of Theorem C.We want to proceed in a fashion similar to the proof of Theorem B.
Our construction ofS[f ] applied tof t producesωt, �t andS[f t] for anyt ∈ [0, 1].

We can make use of formula (2.5) applied toδ = d/dt:

ω̇t = −2T tµ̇t dz ∧ d z̄ − dη(f t; ḟ t) ≡ at − dηt ,

where, as before,Dat = 0. On the other hand,D�̇
t

= 0, sinceD�t = 0 for anyt, and
therefore the same arguments as in the proof of Theorem B lead us to conclude that

〈�̇t
, Σ〉 =

∫
F

at .

Integrating int from 0 to 1 we get thatW [µ] = (c/24π)S[f ], which together with
Theorem C proves part (i).

First statement of part (ii) follows from the fact that it is well-known [1] that the
quasi-Fuchsian deformationf = fµ depends holomorphically onµ. Finally, if f = fµ is
a Fuchsian deformation with harmonic Beltrami differentialµ = y2q̄, then the Ahlfors
lemma (see, e.g., [33]) states

∂f εµ

∂ε̄

∣∣∣∣
ε=0

= −1
2
q.

Therefore, choosing a linear homotopyµ(t) = tµ, we have the following simple com-
putation

∂2W [εµ]
∂ε∂ε̄

∣∣∣∣
ε=0

=
c

12π

∫ 1

0

∫
F

∂f εtµ

∂ε̄

∣∣∣∣
ε=0

µd2 z d t

− c

24π

∫ 1

0
td t

∫
F

qµd2 z

= − c

48π

∫
F

|µ|2y−2 d2 z.

�

Remark 4.8.Theorem C specifies theµ-dependence for two natural solutions forW [µ],
defined by quasi-Fuchsian and Fuchsian deformations. In the former case the correspond-
ing functional is holomorphic inµ, as a generating functional should be, while in the
latter case it is not. Introducing the Weil-Petersson inner product in the space of Bers
harmonic Beltrami differentials by
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(
µ1, µ2

)
WP

=
∫

F

µ1µ̄2 y−2 d2 z,

the latter statement takes a quantative form

∂2W [εµ]
∂ε∂ε̄

∣∣∣∣
ε=0

= − c

48π
||µ||2WP,

that once again characterizes the Weil-Petersson metric as a “holomorphic anomaly”.
Finally, for arbitrary Beltrami differential one should replaceµ by Pµ in the above
formula, whereP stands for the orthogonal projection (with respect to the Weil-Petersson
metric) onto the space of harmonic Beltrami differentials.

4.4. Here we compute the Hessian of the action functionalW as a functional ofµ.
For this end we need to extend the linear mappingM : A−1,0

0 → A−1,1
0 to the space

of pull-backs by the mappingf of Eichler integrals of order−1 for 0̃. This mapping
has no kernel on the subspace of normalized Eichler integrals (i.e. vanishing at 0, 1, ∞)
and, according to Bers, it is onto (see [21]). We denote, slightly abusing the notations,
the inverse of thus extended mappingM by M−1.

Proposition 4.9. The second variation of the functionalW [µ] is given by

δ2 W [µ](δ1µ, δ2µ) =
c

12π

∫
F

δ1µ
(
T ◦ M−1

)
(δ2µ) d2 z ,

where, according to Lemma 4.2, the operatorT ◦M−1 maps Beltrami differentials for0
into quadratic differentials. The Hessian ofW [µ] at the pointµ is given by the operator
∂3 ◦ M−1.

Proof. It is the same as the genus zero computations using Lemma 4.2. Note that at the
critical pointT (z) = 0, so thatT = ∂3. �

5. Fiber Spaces over Teichm̈uller Space. Discussion and Conclusions

In the preceding sections we have defined Polyakov’s action for the chiral sector in
the induced gravity on a Riemann surfaceX of genusg > 1 and explored some of its
properties. We have also pointed out the possible interpretation ofW [µ] = (c/24π) S[f ]
as the universal part of the generating functional for the correlation functions of the
stress-energy tensor for a CFT onX.

However, the most compelling interest inW [µ] (or S[f ]) stems in its relation with
the geometry of the various fiber spaces over Teichmüller space. We want to elaborate
more on this point.

5.1. Recall that the Teichm̈uller spaceT (X) of the Riemann surfaceX of genusg > 1
is naturally realized as the quotient of the open unit ballB(X) (with respect to the
L∞ norm) in the Banach space of Beltrami differentials onX = 0\H by the group
of quasi-conformal self-mappings ofH pointwise fixing the group0. If one replaces
B(X) by its subsetP(X) consisting of smooth Beltrami differentials and considers the
identity componentG0(X) of the groupG(X) of orientation preserving diffeomorphisms
of X (elements inG0(X) point-wise fix0 while acting onH), then one gets Earle and
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Eells [11] fiber spaceπ : P(X) → T (X) over the Teichm̈uller space. It is a smooth (in
the Frech́et topology) principalG0(X)-bundle overT (X). The group action onP(X)
can be written asµ = µ(f ) 7→ µg = µ(f ◦ g), for g ∈ G0(X) [11], wheref = fµ is a
Fuchsian deformation associated withµ. Explicitly, the above action is [1]:

µg =
gz

gz

(
µ − µ(g−1)

1 − µ µ(g−1)

)
◦ g .

Consider now the tangent bundle exact sequence

0 −→ TV P(X)
i−→TP(X) d π−→π∗(TT (X)) −→ 0

determined by the Earle-Eells fibration. (Observe that sinceP(X) is a ball in the vector
spaceA−1,1

0 of all smooth Beltrami differentials, the tangent space to it at any given point
µ is canonically identified withA−1,1

0 .) According to the description of the fixed-end
variation given in 4.2, the deformationf t = f ◦ gt, for t 7→ gt ∈ G0(X), results in a
vertical curvet 7→ µt above the pointπ(µ) ∈ T (X). Thus the corresponding variation
δµ = µ̇ lies in the vertical tangent spaceTV P(X) at pointµ, which is isomorphic to
Im(M), whereM = ∂̄−µ∂+µz : A−1,0

0 → A−1,1
0 . Next, the tangent spaceTµP(X) can

also be identified with the space of smooth0̃-Beltrami differentials; an easy computation
proves the following (well-known) lemma.

Lemma 5.1. For anyν ∈ A−1,1
0 the correspondence

ν 7→
(

fz

fz

ν

1 − |µ|2

)
◦ f−1

mapsA−1,1
0 isomorphically ontoA−1,1

0̃
. Under this mapM becomes∂̄π(µ), the ∂̄-

operator relative to the new complex structure on the Riemann surfaceX defined by
µ.

This implies at once that the kernel ofM is trivial, and therefore the correspondence

v = vz∂z + vz̄∂z̄ 7→ M(vz + µvz̄)

explicitly gives the injection in the tangent bundle sequence above. Furthermore, it
realizesTV P(X) (and its quotient byG0(X)) as a bundle of Lie algebras, as usual in
a principal fibration [4]. Here the Lie algebra in question is the Lie algebra Vect(X) of
smooth vector fields onX, which can be identified – as a real vector space – withA−1,0

0 .
With these definitions at hand, the following reinterpretation of the formulas in the

statement of Theorem B becomes obvious.

Proposition 5.2. For any smooth functionalF : P(X) → C,

1. the open-end variationδF computes its total differential onP(X);
2. the fixed-end variation computes its vertical differential.

In particular, for the action functionalW ,

dW |µ =
c

12π
T ∈ T ∗

µP(X).
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Remark 5.3.The second point in the proposition can be verified by the following explicit
computation, that uses Theorems B, C and Lemma 2.3.

δW

δf (z)
= − c

12π

∫
F

µzzz
δf

fz
d2 z = − c

12π

∫
F

DT (z)
δf

fz
d2 z

=
c

12π

∫
F

T (z)M
(

δf

fz

)
d2 z.

Remark 5.4.The description of the vertical bundle as the image ofM immediately
implies that

Tπ(µ)T (X) ∼= A−1,1
0 / Im(M) ,

so that we get the well-known result [11]

Tπ(µ)T (X) ∼= H0,1
∂̄

(Xµ, TXµ ) ∼= H1(Xµ, ΘXµ ) ,

where the last group gives the Kodaira-Spencer infinitesimal deformations. (ΘXµ is the
holomorphic tangent sheaf to the Riemann surfaceXµ.)

5.2. It is fundamental to investigate how the functionW : P(X) → C relates to the
geometry of the bundleπ : P(X) → T (X). A long but straightforward computation
using the definition (1.10) ofW proves

Lemma 5.5. There existsA : P(X) × G0(X) → C such that

W [µg] = W [µ] + A[µ, g] . (5.1)

The functionalA depends only on the point(µ, g) and is local inµ andµg; in particular,
it is independent of any possible choice of the solution of the Beltrami equation involved
in the definition ofW .

It trivially follows from (5.1) that the functionalA satisfies the cocycle identity:

A[µ, gh] = A[µg, h] + A[µ, g] .

Next, according to [30], the functional9[µ] = exp(−W [µ]) is to be interpreted as a
conformal block for a CFT defined onX. Thus it is more convenient to work with the
exponential version of (5.1). Namely, defining

C[µ, g] = exp(−A[µ, g]) ,

we get
9[µg] = C[µ, g] 9[µ] . (5.2)

The cocycle condition takes the form

C[µ, gh] = C[µg, h] C[µ, g] ,

which defines a 1-cocycle onG0(X) with values in the group of non vanishing complex
valued functions onP(X). We denote by [C] the class ofC in the cohomology group
H1(G0(X), C∗(P(X))).

Proposition 5.6. There is an injective map of the groupH1(G0(X), C∗(P(X))) into the
group of isomorphism classes of line bundles overT (X). The line bundleL[C] over
T (X), defined by[C] is, in particular, holomorphic.
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Proof. The existence of a map

0 → H1(G0(X), C∗(P(X))) → H2(T (X), Z)

is an application of the well-known concept ofG-vector bundle as presented in [5, 28].
We define an action byG0(X) on the trivial line bundlẽL = P(X) × C by

(µ, z) 7→ (µg, C[µ, g]z) . (5.3)

The action is free since it is so on the first factor, henceL = L̃/G0(X) is a line bundle
overT (X). As it is easily checked, cohomologous cocycles yield isomorphic bundles,
and soL[C] is trivial if and only if [C] is trivial.

Next, observe thatC[µ, g] can be defined using the quasi-Fuchsian prescription,
which, according to Theorem C, yields a holomorphicW . Moreover,µg is holomorphic
in µ, as it follows from the explicit expression. Thus,C[ · , g] is holomorphic and so is
the action 5.3. �

Remark 5.7.The construction of the line bundleL is well known from works on
anomalies [3, 10, 12]. An explicit construction of the mapH1(G0(X), C∗(P(X))) →
H2(T (X), Z) usingČech cohomology appears in [12].

It follows from general arguments (cf. [28]) that sections ofL[C] can be identified with the
G0(X)-invariant sections of̃L, namely with those functions8 : P(X) → C satisfying

8[µg] = C[µ, g] 8[µ] .

Since the conformal block9 = exp(−W ) does not vanish, the foregoing proves the
following

Proposition 5.8. The conformal block9 descends to a non-vanishing section ofL[C] ,
thereby providing a trivializing isomorphismL[C] → T (X) × C.

Observe (cf. [35]) that the line bundleL[C] is holomorphically trivial due to a general
property of the Teichm̈uller space being a contractible domain of holomorphy [25]. Our
construction provides an instance of this general fact, as well as an explicit trivializing
map. Also note that, due to the universal nature of the cocycleC, the ratio of two different
conformal blocks, in accordance with [30], isG0(X)-invariant and, therefore, descends
to a non-vanishing function on the Teichmüller spaceT (X).

5.3. The preceding observations bring in several additional questions concerning the ge-
ometrical significance of exp(−W [µ]). For instance, we can define the trivial connection
on the trivial line bundlẽL onP(X):

∇8 = 9d(9−18)

= d8 − (9−1 d9)8 .

This connection is easily verified to beG0(X)-invariant, hence it descends ontoL[C] . It
follows from Proposition 5.2 and Theorem B that the connection form coincides with
dW = c T/12π.

This is very reminiscent of Friedan and Shenker’s modular geometry program for
CFT [14], where the vacuum expectation value of the stress-energy tensor is interpreted
as a connection on a line bundle over the moduli space. As a further development, this
suggests studying the action of the full groupG(X) on the presented construction. As
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it is well known [11], the quotient ofP(X)/G(X) (the action being the same as in the
previous case) is precisely the moduli space of compact Riemann surfaces of genus
g > 1. All the local formulas will stay the same, while the action of the modular group
G(X)/G0(X) on T (X) will introduce the topological “twisting”. All of this should
be fundamental for the differential-geometrical realization of Friedan and Shenker’s
program. In this respect it is important, as we proved in the paper, that the functional
W [µ] is independent of the marking of a Riemann surfaceX.

Another direction, more directly related to the Earle-Eells fibration consists in finding
the geometric interpretation of the critical pointsT = 0 and “vertical critical” points
µzzz = 0 of the functionalW [µ].

Finally, the question of the relation ofW [µ] with the full induced gravity action on
X is also very important. Recall the genus zero factorization [30]∫

R1−1R = W [µ] + W [µ̄] + K[φ, µ, µ̄] ,

where the termK[φ, µ, µ̄] is further decomposed as a sum

K[φ, µ, µ̄] = SL[φ, µ, µ̄] + KBK[µ, µ̄]

of the Belavin-Knizhnik-like anomaly term plus the Liouville action in the background
|dz + µd z̄|2. After having properly definedW [µ] on X, it is natural to ask whether
such a decomposition holds in higher genus as well. We observe that the general
(co)homological techniques applied in this paper can also be used to give a mathe-
matically rigorous construction of the Liouville action (in various backgrounds) in the
form of a “bulk” term plus boundary and vertex corrections, as in the spirit of [29, 33].
A construction of this kind should provide a meaning also to the full action

∫
R1−1R in

terms of a Liouville action in the “target” complex structure, provided one can actually
defineKBK in higher genus as well. A full understanding of the geometrical properties
of W [µ] andKBK and their exponentials would be relevant in order to put the Geometric
Quantization approach of ref. [30] and, more generally, the three-dimensional approach
to two-dimensional gravity on a more conventional mathematical basis. Finally, similar
construction can be carried out for defining the WZW functional on the higher genus
Riemann surfaces. We are planning to address these questions in the next publications.

Appendix A. Some Facts from Homological Algebra

We give a brief account on the use of double complexes as applied to our situation. We
shall mainly focus on homology and just indicate the required modifications to discuss
the cohomological counterpart of the various statements. For a full account cf. any book
on homological algebra, like, for instance, [23].

A.1. The framework we put ourselves in is sufficiently simple that one can in fact avoid
the use of spectral sequences altogether in the proof of Lemmas 3.2 and 3.3, provided
one takes into account a few simple facts from homological algebra. The key point is that
the various double complexes we are interested in have trivial (co)homology in higher
degrees with respect to either the first or second differentials, so the arguments can be
given in general, without referring to specific examples.

Let K•,• a double complex with differentials∂′ : Kp,q → Kp−1,q and∂′′ : Kp,q →
Kp,q−1, and total differential∂|Kp,q

= ∂′ + (−1)p ∂′′. According to our discussion, let us
make the assumption that
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H∂′′
q (Kp,•) =

{
Cp q = 0
0 q > 0 .

ThenC•
def
= ⊕Cp inherits a differential1 ∂ : Cp → Cp−1 from the first differential∂′ in

the double complex, and since

· · · ∂′′
←−Kp,q−1

∂′′
←−Kp,q

∂′′
←−Kp,q+1

∂′′
←− · · ·

is exact except in degree zero, we can “augment”K•,• inserting the projectionε : Kp,0 →
Cp to obtain the exact sequence

0 ←− C• ←− K•,• .

Proposition A.1.
H•(Tot K) ∼= H•(C) .

Proof. This is a routine check of the definitions. Supposec ∈ Cp is closed, i.e.∂c = 0.
This means that a chainc0 ∈ Kp,0 exists such thatε(∂′c0) = 0, butε(∂′c0) is the class
represented by∂′c0, since we clearly have∂′′∂′c0 = 0. So, this class is zero, and therefore
we have

∂′c0 = ∂′′c1 for c1 ∈ Kp−1,1 .

Now, ∂′′(∂′c1) = ∂′(∂′′c1) = ∂′∂′c0 = 0, and since the∂′′-homology ofK•,• is concen-
trated only in dimension zero, ac2 ∈ Kp−2,2 must exist such that

∂′c1 = ∂′′c2 ,

and so on. The procedure stops at thepth step. Thus the chain

C = c0 +
p∑

i=1

(−1)
∑i−1

k=0
(p−k)ci

is a cycle in TotK, that is,∂C = 0.

Conversely, supposeC = c0 +
∑p

i=1 (−1)
∑i−1

k=0
(p−k)ci ∈ Tot K is ∂-closed. Then

c ≡ ε(c0) is a degreep cycle inCp. Indeed, in degree (p − 1, 0) we have∂′c0 = ∂′′c1
and

ε(∂′c0) = ε(∂′′c1) = 0 ,

since the augmentation is exact.
That the cyclec ∈ Cp is a boundary if and only ifC ∈ Tot K is a boundary can be

proven along the same lines. This completes the argument.�

A.2. Recall from Sect. 3 the various double complexes we used. In particular,K•,• =
S• ⊗Z0 B• is the double complex obtained tensoring the singular chain complex on
X0

∼= H with the “bar” complex

0 ←− B0
∂′′
←−B1

∂′′
←− · · · ∂′′

←−Bn
∂′′
←− · · · , (A.1)

which is exact except in degree zero. Its definition has been given in the main text. Being
B0 a0-module on the generator [ ], introducing the augmentationε : B0 → Z, ε([ ]) = 1,
we can rewrite it as the exact sequence

1 The use of the same symbol to denote the differentials inC and TotK should not generate any confusion.
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0 ←− Z ε←−B0
∂′′
←−B1

∂′′
←− · · · ∂′′

←−Bn
∂′′
←− · · · . (A.2)

The above exact sequence is usually referred to as a “resolution” of the integers. Since
everyBq is afree0-module, the sequence is a free resolution.

The singular chain complexS• ≡ S•(X0) needs little description. Since0 acts on
the space,S• acquires a0-module structure simply by translating around the chains.
That this actually is a complex offree 0-modules is proven in [23] or [9]. A choice
of free generators is to take those chains whose first vertex lies in a suitably chosen
fundamental domain inX0. The differential, which we called∂′ in the main text, is just
the usual boundary homomorphism.

The homology of0 with coefficients in any0-moduleM is by definition the ho-
mology of the complexM ⊗Z0 B•. (Any other resolution ofZ would be adequate.) In
fact, tensor product does not preserve exactness in general. As a matter of terminology,
a moduleM such that any exact sequence remains exact after tensoring with it, is called
flat. Therefore, all the higher homology groups of0 with coefficient in a flat module
will be zero. A free0-module is in particular flat, as it is very easy to see. So, in our
case, we have

Hq(0, Sp) =

{
Sp ⊗Z0 Z q = 0
0 q > 0

,

whereZ is considered as a trivial0-module. Moreover, note thatSp⊗Z0Z ≡ Sp(X0)⊗Z0

Z ∼= Sp(X) the space of singular chains on the surface. Indeed, ifc is any chain onX0
andγ is any group element, we havec · γ ⊗ 1 = c ⊗ γ · 1 = c ⊗ 1, and thereforec ⊗ 1
can be identified with a singular chain on the surface, as claimed.

After these preparations, we can exploit the exact complex (A.2) to build the aug-
mented double complex

�0 (A.3)�S• ⊗Z0 Z S• ⊗Z0 B•
id ⊗ε

with exact rows. According to the foregoing, the leftmost column in (A.3) is to be
identified with the singular chain complex on the surface. (Or, more generally, of the
quotient space.)

The complex (A.3) satisfies the hypotheses of Proposition (A.1), and since the group
homology is the∂′′-homology of the double complex, we conclude thatH•(Tot K) ∼=
H•(X, Z) thereby proving one half of Lemma 3.2.

In order to prove the other half, let us observe that actually all the columns in (A.3),
except the first one, are exact,X0

∼= H being a contractible space. Indeed, the complex
S• carries no homology except in degree zero, and we can “augment” it as well to obtain
another resolution of the integers:

0 ←− Z ε←−S0
∂′

←−S1
∂′

←− · · · ∂′
←−Sn

∂′
←− · · · .

Now the situation is completely symmetric and we can just “transpose” the above con-
structions to build the augmented complex
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?

?

0

Z ⊗Z0 B•

ε ⊗ id

S• ⊗Z0 B•

and apply Proposition A.1 to it to show thatH•(Tot K) ∼= H•(0, Z).

A.3. The cohomological picture has a very similar structure. The cohomology of0

with coefficients inM is by definition the homology of the complex HomZ0(B•, M ).
(Notice that Hom is contravariant in the first variable, thus it reverses the arrows.) We
will be in position to apply the analogue of Proposition A.1 with the arrows reversed to
the complexC•,• = Hom(B•, A•) provided we show thatHq(0, Ap) = 0 for q > 0, that
is, Hom(· , Ap) must preserve exactness, so that the higher cohomology groups are zero.
An injectivemoduleM is by definition a0-module such that Hom(· , M ) preserves
exactness, hence the higher cohomology groups of0 with coefficients into an injective
are zero. Thus we have to show thatAp is injective as a0-module. In fact, more can
be done, namely it can be shown thatAp ∼= HomZ(Z0, Ap

C(X)), whereAp
C(X) is the

vector space of (complex valued) differential forms on the Riemann surfaceX. The
(easy) proof of this assertion requires the construction of an equivariant partition of
unity onH, see [21]. ThenAp has no higher cohomology since

HomZ0(B•, Ap) ∼= HomZ0(B•, HomZ(Z0, Ap
C(X)))

∼= HomZ(B•, A
p
C(X)) ,

and the last complex has no cohomology, except in degree zero. Thus we have

Hq(0, Ap) =

{
Ap

C(X) q = 0
0 q > 0 ,

and applying Proposition A.1 to the double complexC•,• we can prove that

H•(Tot C) ∼= H•(X, C) .

To prove the rest of Lemma 3.3 we need only use the contractibility ofX0
∼= H, so that

A• has no cohomology, and apply Proposition A.1 to the transposed double complex.
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Note added in proof
After the work described in thos paper has been completed, the articles [36] and [37],
where similar double complexes for group cohomology are also used, have been brought
to our attention.
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